Advertisements
Advertisements
Question
Write the following in exponential form:
Solution
\[\left( \frac{3}{2} \right)^{- 1} \times \left( \frac{3}{2} \right)^{- 1} \times \left( \frac{3}{2} \right)^{- 1} \times \left( \frac{3}{2} \right)^{- 1} = \left( \frac{3}{2} \right)^{- 1 + \left( - 1 \right) + \left( - 1 \right) + \left( - 1 \right)} \left\{ a^m \times a^n = a^{m + n} \right\}\]
\[ = \left( \frac{3}{2} \right)^{- 4} \]
APPEARS IN
RELATED QUESTIONS
Simplify.
`(25 xx t^(-4))/(5^(-3) xx10xxt^(-8)) (t != 0)`
Express the following as a rational number of the form \[\frac{p}{q},\] where p and q are integers and q ≠ 0.
Evaluate:
\[\left( \frac{1}{3} \right)^{- 4}\]
Simplify:
Find x, if \[\left( \frac{1}{4} \right)^{- 4} \times \left( \frac{1}{4} \right)^{- 8} = \left( \frac{1}{4} \right)^{- 4x}\]
Find the multiplicative inverse of the following.
10– 5
For a fixed base, if the exponent decreases by 1, the number becomes ______.
Predicting the ones digit, copy and complete this table and answer the questions that follow.
Powers Table | ||||||||||
x | 1x | 2x | 3x | 4x | 5x | 6x | 7x | 8x | 9x | 10x |
1 | 1 | 2 | ||||||||
2 | 1 | 4 | ||||||||
3 | 1 | 8 | ||||||||
4 | 1 | 16 | ||||||||
5 | 1 | 32 | ||||||||
6 | 1 | 64 | ||||||||
7 | 1 | 128 | ||||||||
8 | 1 | 256 | ||||||||
Ones Digits of the Powers |
1 | 2, 4, 8, 6 |
- Describe patterns you see in the ones digits of the powers.
- Predict the ones digit in the following:
- 412
- 920
- 317
- 5100
- 10500
- Predict the ones digit in the following:
- 3110
- 1210
- 1721
- 2910
Simplify and express the result in power notation with positive exponent.
(3−7 ÷ 3−10) × 3−5