Advertisements
Advertisements
Question
Simplify.
`(25 xx t^(-4))/(5^(-3) xx10xxt^(-8)) (t != 0)`
Solution
We have,
`(25 xx t^(-4))/(5^(-3) xx10xxt^(-8))`
`= ((5) xx t^-4)/ ((5)^-3 xx (5)^1 xx (2)^1 xx t^-8)`
`= ((5)^2 xx t^-4)/ (5^(-3 +1) xx (2)^1xxt^-8)` ...[∵ am . an = am+n]
`= ((5)^2 xx t^-4)/ ((5)^-2 xx (2)^1 xx t^-8)`
`= ((5)^(2+2) xxt^(-4+8))/ 2` ...`[a^m/a^n = a^(m-n)]`
`= ((5)^4 xxt^4)/2`
`= (625 xxt^4)/2`
`= (625t^4)/2`
APPEARS IN
RELATED QUESTIONS
Find the value of m for which 5m ÷5−3 = 55.
Simplify:
Evaluate:
\[\left( \frac{- 1}{2} \right)^{- 1}\]
Express the following as a rational number in the form \[\frac{p}{q}:\]
Express the following rational numbers with a negative exponent:
Find the value of `(1/2)^(-2)+(1/3)^(-2)+(1/4)^(-2)`
Evaluate.
(5−1 × 2−1))× 6−1
The multiplicative inverse of `(3/2)^2` is not equal to `(2/3)^-2`.
The expression for 4–3 as a power with the base 2 is 26.
Simplify and express the result in power notation with positive exponent.
`(−3)^4 × (5/3)^4`