English

( 1 5 ) 0 is Equal to - Mathematics

Advertisements
Advertisements

Question

\[\left( \frac{1}{5} \right)^0\]  is equal to

Options

  • 0

  • \[\frac{1}{5}\]

     

  • 1

  • 5

MCQ
Sum

Solution

 1
We have:
`(1/5)^0=1`  → (a0 = 1, for every non-zero rational number a.)

shaalaa.com
  Is there an error in this question or solution?
Chapter 2: Powers - Exercise 2.4 [Page 24]

APPEARS IN

RD Sharma Mathematics [English] Class 8
Chapter 2 Powers
Exercise 2.4 | Q 11 | Page 24

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Express the following as a rational number of the form \[\frac{p}{q},\] where p and q are integers and q ≠ 0.

\[\frac{1}{3^{- 2}}\]

 


Simplify:
\[\left( 3^{- 1} \times 4^{- 1} \right)^{- 1} \times 5^{- 1}\]


Express the following as a rational number in the form \[\frac{p}{q}:\]

(−7)−1


Simplify:

\[\left( 4^{- 1} - 5^{- 1} \right) \div 3^{- 1}\]


Express the following rational numbers with a positive exponent:

\[\left\{ \left( \frac{3}{2} \right)^4 \right\}^{- 2}\]

Find x, if
\[\left( \frac{- 1}{2} \right)^{- 19} \times \left( \frac{- 1}{2} \right)^8 = \left( \frac{- 1}{2} \right)^{- 2x + 1}\]


Find x, if

\[\left( \frac{2}{5} \right)^{- 3} \times \left( \frac{2}{5} \right)^{15} = \left( \frac{2}{5} \right)^{2 + 3x}\]

\[\left\{ \left( \frac{1}{3} \right)^2 \right\}^4\] is equal to

The expression for 4–3 as a power with the base 2 is 26.


Predicting the ones digit, copy and complete this table and answer the questions that follow.

 Powers Table
x 1x 2x 3x 4x 5x 6x 7x 8x 9x 10x
1 1 2                
2 1 4                
3 1 8                
4 1 16                
5 1 32                
6 1 64                
7 1 128                
8 1 256                
Ones
Digits
of the
Powers
1 2, 4, 8, 6                
  1. Describe patterns you see in the ones digits of the powers.
  2. Predict the ones digit in the following:
    1. 412
    2. 920
    3. 317
    4. 5100
    5. 10500
  3. Predict the ones digit in the following:
    1. 3110
    2. 1210
    3. 1721
    4. 2910 

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×