Advertisements
Advertisements
Question
\[\left( \frac{1}{5} \right)^0\] is equal to
Options
0
- \[\frac{1}{5}\]
1
5
MCQ
Sum
Solution
1
We have:
`(1/5)^0=1` → (a0 = 1, for every non-zero rational number a.)
shaalaa.com
Is there an error in this question or solution?
APPEARS IN
RELATED QUESTIONS
Express the following as a rational number of the form \[\frac{p}{q},\] where p and q are integers and q ≠ 0.
\[\frac{1}{3^{- 2}}\]
Simplify:
\[\left( 3^{- 1} \times 4^{- 1} \right)^{- 1} \times 5^{- 1}\]
Express the following as a rational number in the form \[\frac{p}{q}:\]
(−7)−1
Simplify:
\[\left( 4^{- 1} - 5^{- 1} \right) \div 3^{- 1}\]
Express the following rational numbers with a positive exponent:
\[\left\{ \left( \frac{3}{2} \right)^4 \right\}^{- 2}\]
Find x, if
\[\left( \frac{- 1}{2} \right)^{- 19} \times \left( \frac{- 1}{2} \right)^8 = \left( \frac{- 1}{2} \right)^{- 2x + 1}\]
Find x, if
\[\left( \frac{2}{5} \right)^{- 3} \times \left( \frac{2}{5} \right)^{15} = \left( \frac{2}{5} \right)^{2 + 3x}\]
\[\left\{ \left( \frac{1}{3} \right)^2 \right\}^4\] is equal to
The expression for 4–3 as a power with the base 2 is 26.
Predicting the ones digit, copy and complete this table and answer the questions that follow.
Powers Table | ||||||||||
x | 1x | 2x | 3x | 4x | 5x | 6x | 7x | 8x | 9x | 10x |
1 | 1 | 2 | ||||||||
2 | 1 | 4 | ||||||||
3 | 1 | 8 | ||||||||
4 | 1 | 16 | ||||||||
5 | 1 | 32 | ||||||||
6 | 1 | 64 | ||||||||
7 | 1 | 128 | ||||||||
8 | 1 | 256 | ||||||||
Ones Digits of the Powers |
1 | 2, 4, 8, 6 |
- Describe patterns you see in the ones digits of the powers.
- Predict the ones digit in the following:
- 412
- 920
- 317
- 5100
- 10500
- Predict the ones digit in the following:
- 3110
- 1210
- 1721
- 2910