Advertisements
Advertisements
Question
Simplify:
\[\left( 3^{- 1} \times 4^{- 1} \right)^{- 1} \times 5^{- 1}\]
Sum
Solution
\[\left( 3^{- 1} \times 4^{- 1} \right)^{- 1} \times 5^{- 1}\] - `(1/3xx1/4)^(-1)xx1/5` `->(a^(-1)=1/a)`
`=(1/12)^(-1)xx1/5`
`=12/5` `->(a^(-1)=1/a)`
shaalaa.com
Is there an error in this question or solution?
APPEARS IN
RELATED QUESTIONS
Express the following as a rational number of the form \[\frac{p}{q},\] where p and q are integers and q ≠ 0.
2−3
Find the value of the following:
(30 + 4−1) × 22
Simplify:
\[\left( 4^{- 1} \times 3^{- 1} \right)^2\]
Evaluate:
(−3)−2
Simplify:
\[\left( 4^{- 1} - 5^{- 1} \right) \div 3^{- 1}\]
Simplify:
\[\left\{ \left( \frac{1}{3} \right)^{- 3} - \left( \frac{1}{2} \right)^{- 3} \right\} \div \left( \frac{1}{4} \right)^{- 3}\]
Simplify:
\[\left\{ \left( \frac{2}{3} \right)^2 \right\}^3 \times \left( \frac{1}{3} \right)^{- 4} \times 3^{- 1} \times 6^{- 1}\]
For a non zero rational number a, (a3)−2 is equal to
The multiplicative inverse of `(3/2)^2` is not equal to `(2/3)^-2`.
Express 3–5 × 3–4 as a power of 3 with positive exponent.