Advertisements
Advertisements
Question
Simplify:
Solution
\[\left\{ \left( \frac{1}{3} \right)^{- 3} - \left( \frac{1}{2} \right)^{- 3} \right\} \div \left( \frac{1}{4} \right)^{- 3}\] `=(1/(1/3)^3-1/(1/2)^3)div1/(1/4)^3` `->(a^(-n)=1/(a^n))`
`=(1/(1/27)-1/(1/8))div1/(1/64)`
`=(27/1-8/1)div64`
`=(19)xx1/64`
`=19/64`
APPEARS IN
RELATED QUESTIONS
Simplify:
By what number should \[\left( \frac{1}{2} \right)^{- 1}\] be multiplied so that the product may be equal to \[\left( - \frac{4}{7} \right)^{- 1} ?\]
Simplify:
By what number should 5−1 be multiplied so that the product may be equal to (−7)−1?
Find x, if \[\left( \frac{1}{4} \right)^{- 4} \times \left( \frac{1}{4} \right)^{- 8} = \left( \frac{1}{4} \right)^{- 4x}\]
Find x, if
\[\left( \frac{- 1}{2} \right)^{- 19} \times \left( \frac{- 1}{2} \right)^8 = \left( \frac{- 1}{2} \right)^{- 2x + 1}\]
Find x, if
If \[x = \left( \frac{4}{5} \right)^{- 2} \div \left( \frac{1}{4} \right)^2\], find the value of x−1.
For any two non-zero rational numbers a and b, a4 ÷ b4 is equal to
For a fixed base, if the exponent decreases by 1, the number becomes ______.