Advertisements
Advertisements
Question
If \[x = \left( \frac{4}{5} \right)^{- 2} \div \left( \frac{1}{4} \right)^2\], find the value of x−1.
Sum
Solution
First, we have to find x.
\[x = \left( \frac{4}{5} \right)^{- 2} \div \left( \frac{1}{4} \right)^2\] →((a/b)n = (an)/(bn))
`=(4^(-2)/5^(-2))xx4^2`
`=4^0/5^(-2)`
`=1/56(-2)` → (a0 = 1)
Hence, the value of x−1 is:
`x^(-1)=(1/5^(-2))^(-1)`
`=(5^2)^(-1)` →(a−1 = 1/a)
`=1/5^2` →(a−1 = 1/a)
shaalaa.com
Is there an error in this question or solution?
APPEARS IN
RELATED QUESTIONS
Express the following as a rational number of the form \[\frac{p}{q},\] where p and q are integers and q ≠ 0.
\[\left( \frac{2}{3} \right)^{- 2}\]
Find the value of the following:
(5−1 × 2−1) ÷ 6−1
Simplify:
\[\left( 4^{- 1} \times 3^{- 1} \right)^2\]
Simplify:
\[\left( 2^{- 1} + 3^{- 1} \right)^{- 1}\]
Simplify:
\[\left( 3^2 + 2^2 \right) \times \left( \frac{1}{2} \right)^3\]
Simplify:
\[\left[ \left( \frac{1}{3} \right)^{- 3} - \left( \frac{1}{2} \right)^{- 3} \right] \div \left( \frac{1}{4} \right)^{- 3}\]
Evaluate:
(−3)−2
Simplify:
\[\left[ \left\{ \left( \frac{- 1}{4} \right)^2 \right\}^{- 2} \right]^{- 1}\]
Find x, if
\[\left( \frac{3}{2} \right)^{- 3} \times \left( \frac{3}{2} \right)^5 = \left( \frac{3}{2} \right)^{2x + 1}\]
Find the value of `(1/2)^(-2)+(1/3)^(-2)+(1/4)^(-2)`