Advertisements
Advertisements
Question
if \[x = \left( \frac{3}{2} \right)^2 \times \left( \frac{2}{3} \right)^{- 4}\], find the value of x−2.
Solution
First, we have to find x.
\[x = \left( \frac{3}{2} \right)^2 \times \left( \frac{2}{3} \right)^{- 4} \]
\[ = \left( \frac{3}{2} \right)^2 \times \left( \frac{3}{2} \right)^4 \]
\[ = \left( \frac{3}{2} \right)^6\] →(a−1 = 1/a)
Hence, x−2 is:
\[x^{- 2} = \left( \left( \frac{3}{2} \right)^6 \right)^{- 2} \]
\[ = \left( \frac{3}{2} \right)^{- {12}^{}} \]
\[ = \left( \frac{2}{3} \right)^{12}\] →(a−1 = 1/a)
APPEARS IN
RELATED QUESTIONS
Simplify and express the result in power notation with positive exponent.
(−4)5 ÷ (−4)8
Express the following as a rational number of the form \[\frac{p}{q},\] where p and q are integers and q ≠ 0.
Simplify:
Write the following in exponential form:
Simplify:
\[\left\{ 3^{- 1} \times 4^{- 1} \right\}^{- 1} \times 5^{- 1}\]
Express the following rational numbers with a negative exponent:
Express the following rational numbers with a positive exponent:
Simplify:
Find x, if \[\left( \frac{1}{4} \right)^{- 4} \times \left( \frac{1}{4} \right)^{- 8} = \left( \frac{1}{4} \right)^{- 4x}\]