Advertisements
Advertisements
Question
Find x, if \[\left( \frac{1}{4} \right)^{- 4} \times \left( \frac{1}{4} \right)^{- 8} = \left( \frac{1}{4} \right)^{- 4x}\]
Solution
We have:
\[\left( \frac{1}{4} \right)^{- 4} \times \left( \frac{1}{4} \right)^{- 8} = \left( \frac{1}{4} \right)^{- 4x}\]
`(1/4)^(-12)=(1/4)^(-4x)`
-12 = -4x
3 = x
x = 3
APPEARS IN
RELATED QUESTIONS
Evaluate.
3−2
Find the value of `{((-2)/3)^(-2)}^2`
Simplify:
By what number should (−15)−1 be divided so that the quotient may be equal to (−5)−1?
Simplify:
By what number should (−15)−1 be divided so that the quotient may be equal to (−5)−1?
if \[x = \left( \frac{3}{2} \right)^2 \times \left( \frac{2}{3} \right)^{- 4}\], find the value of x−2.
Which of the following numbers is not equal to \[\frac{- 8}{27}?\]
(a) \[\left( \frac{2}{3} \right)^{- 3}\]
(b) \[- \left( \frac{2}{3} \right)^3\]
(c) \[\left( - \frac{2}{3} \right)^3\]
(d) \[\left( \frac{- 2}{3} \right) \times \left( \frac{- 2}{3} \right) \times \left( \frac{- 2}{3} \right)\]
The multiplicative inverse of `(- 5/9)^99` is ______.
Predicting the ones digit, copy and complete this table and answer the questions that follow.
Powers Table | ||||||||||
x | 1x | 2x | 3x | 4x | 5x | 6x | 7x | 8x | 9x | 10x |
1 | 1 | 2 | ||||||||
2 | 1 | 4 | ||||||||
3 | 1 | 8 | ||||||||
4 | 1 | 16 | ||||||||
5 | 1 | 32 | ||||||||
6 | 1 | 64 | ||||||||
7 | 1 | 128 | ||||||||
8 | 1 | 256 | ||||||||
Ones Digits of the Powers |
1 | 2, 4, 8, 6 |
- Describe patterns you see in the ones digits of the powers.
- Predict the ones digit in the following:
- 412
- 920
- 317
- 5100
- 10500
- Predict the ones digit in the following:
- 3110
- 1210
- 1721
- 2910