Advertisements
Advertisements
Question
Predicting the ones digit, copy and complete this table and answer the questions that follow.
Powers Table | ||||||||||
x | 1x | 2x | 3x | 4x | 5x | 6x | 7x | 8x | 9x | 10x |
1 | 1 | 2 | ||||||||
2 | 1 | 4 | ||||||||
3 | 1 | 8 | ||||||||
4 | 1 | 16 | ||||||||
5 | 1 | 32 | ||||||||
6 | 1 | 64 | ||||||||
7 | 1 | 128 | ||||||||
8 | 1 | 256 | ||||||||
Ones Digits of the Powers |
1 | 2, 4, 8, 6 |
- Describe patterns you see in the ones digits of the powers.
- Predict the ones digit in the following:
- 412
- 920
- 317
- 5100
- 10500
- Predict the ones digit in the following:
- 3110
- 1210
- 1721
- 2910
Solution
a. On the basis of given pattern in 1x and 2x, we can make more patterns for 3x 4x, 5x, 6x, 7x, 8x, 9x, 10x.
Thus, we have following table which shows all details about the patterns.
Powers Table | ||||||||||
x | 1x | 2x | 3x | 4x | 5x | 6x | 7x | 8x | 9x | 10x |
1 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
2 | 1 | 4 | 9 | 16 | 25 | 36 | 49 | 64 | 81 | 100 |
3 | 1 | 8 | 27 | 64 | 125 | 216 | 343 | 512 | 729 | 1000 |
4 | 1 | 16 | 81 | 256 | 625 | 1296 | 2401 | 4096 | 6561 | 10000 |
5 | 1 | 32 | 243 | 1024 | 3125 | 7776 | 16807 | 32768 | 59049 | 100000 |
6 | 1 | 64 | 729 | 4096 | 15625 | 46656 | 117649 | 262144 | 531441 | 1000000 |
7 | 1 | 128 | 2187 | 16384 | 78125 | 279936 | 823543 | 2097152 | 4782969 | 10000000 |
8 | 1 | 256 | 6561 | 65536 | 390625 | 1679616 | 5764801 | 16777216 | 43046721 | 100000000 |
Ones Digits of the Powers |
1 | 2, 4, 8, 6 | 3, 9, 7, 1 | 4, 6 | 5 | 6 | 7, 9, 3, 1 | 8, 4, 2, 6 | 9.1 | 0 |
b.
- Ones digit in 412 is 6.
- Ones digit in 920 is 1.
- Ones digit in 317 is 3.
- Ones digit in 5100 is 5.
- Ones digit in 10500 is 0.
Note: Follow the above given table.
c.
- Ones digit in 3110 is 1.
- Ones digit in 1210 is 4.
- Ones digit in 1721 is 7.
- Ones digit in 2910 is 1.
APPEARS IN
RELATED QUESTIONS
Express the following as a rational number of the form \[\frac{p}{q},\] where p and q are integers and q ≠ 0.
Express the following as a rational number of the form \[\frac{p}{q},\] where p and q are integers and q ≠ 0.
Simplify:
Simplify:
\[\left\{ 5^{- 1} \div 6^{- 1} \right\}^3\]
Find x, if
\[\left( \frac{- 1}{2} \right)^{- 19} \times \left( \frac{- 1}{2} \right)^8 = \left( \frac{- 1}{2} \right)^{- 2x + 1}\]
Find x, if
If \[x = \left( \frac{4}{5} \right)^{- 2} \div \left( \frac{1}{4} \right)^2\], find the value of x−1.
Find the value of x for which 52x ÷ 5−3 = 55.
The multiplicative inverse of (– 4)–2 is (4)–2.