Advertisements
Advertisements
Question
Find x, if
Solution
We have:
\[\left( \frac{2}{5} \right)^{- 3} \times \left( \frac{2}{5} \right)^{15} = \left( \frac{2}{5} \right)^{2 + 3x}\]
\[\left( \frac{2}{5} \right)^{12} = \left( \frac{2}{5} \right)^{2 + 3x}\]
12 = 2 + 3x
10 = 3x
`10/3=x`
`x=10/3`
APPEARS IN
RELATED QUESTIONS
Write the following in exponential form:
Evaluate:
\[\left( \frac{1}{3} \right)^{- 4}\]
Express the following rational numbers with a positive exponent:
Simplify:
Cube of \[\frac{- 1}{2}\] is
Which of the following numbers is not equal to \[\frac{- 8}{27}?\]
(a) \[\left( \frac{2}{3} \right)^{- 3}\]
(b) \[- \left( \frac{2}{3} \right)^3\]
(c) \[\left( - \frac{2}{3} \right)^3\]
(d) \[\left( \frac{- 2}{3} \right) \times \left( \frac{- 2}{3} \right) \times \left( \frac{- 2}{3} \right)\]
The multiplicative inverse of `(3/2)^2` is not equal to `(2/3)^-2`.
Simplify and express the result in power notation with positive exponent.
2−3 × (−7)−3