Advertisements
Advertisements
Question
Find x, if
\[\left( \frac{3}{2} \right)^{- 3} \times \left( \frac{3}{2} \right)^5 = \left( \frac{3}{2} \right)^{2x + 1}\]
Sum
Solution
We have:
\[\left( \frac{3}{2} \right)^{- 3} \times \left( \frac{3}{2} \right)^5 = \left( \frac{3}{2} \right)^{2x + 1}\]
`(3/2)^2=(3/2)^(2x+1)`
2 = 2x + 1
1 = 2x
`1/2=x`
x = `1/2`
shaalaa.com
Is there an error in this question or solution?
APPEARS IN
RELATED QUESTIONS
Find the value of `{((-2)/3)^(-2)}^2`
Simplify.
`(3^(-5) xx 10^(-5) xx 125)/(5^(-7) xx 6^(-5))`
Write the following in exponential form:
\[\left( \frac{3}{2} \right)^{- 1} \times \left( \frac{3}{2} \right)^{- 1} \times \left( \frac{3}{2} \right)^{- 1} \times \left( \frac{3}{2} \right)^{- 1}\]
Simplify:
\[\left\{ 5^{- 1} \div 6^{- 1} \right\}^3\]
Simplify:
\[\left\{ 3^{- 1} \times 4^{- 1} \right\}^{- 1} \times 5^{- 1}\]
Find x, if
\[\left( \frac{8}{3} \right)^{2x + 1} \times \left( \frac{8}{3} \right)^5 = \left( \frac{8}{3} \right)^{x + 2}\]
\[\left( \frac{- 2}{5} \right)^7 \div \left( \frac{- 2}{5} \right)^5\] is equal to
\[\left( \frac{2}{3} \right)^{- 5} \times \left( \frac{5}{7} \right)^{- 5}\] is equal to
For a non zero rational number a, (a3)−2 is equal to
The multiplicative inverse of `(3/2)^2` is not equal to `(2/3)^-2`.