Advertisements
Advertisements
Question
\[\left( \frac{- 1}{5} \right)^3 \div \left( \frac{- 1}{5} \right)^8\] is equal to
Options
- \[\left( - \frac{1}{5} \right)^5\]
- \[\left( - \frac{1}{5} \right)^{11}\]
- \[( - 5 )^5\]
- \[\left( \frac{1}{5} \right)^5\]
MCQ
Sum
Solution
\[( - 5 )^5\]
We have:
\[\left( \frac{- 1}{5} \right)^3 \div \left( \frac{- 1}{5} \right)^8\] `=((-1)/5)^(3-8)`
`=((-1)/5)^(-5)`
`=1/((-1)/5)^5`
`=1/(((-1)^5/5^5))`
`=5^5/(-1)^5`
`=(5/(-1))^5`
`=(-5)^5`
shaalaa.com
Is there an error in this question or solution?
APPEARS IN
RELATED QUESTIONS
Simplify.
`(25 xx t^(-4))/(5^(-3) xx10xxt^(-8)) (t != 0)`
Simplify:
\[\left( 4^{- 1} \times 3^{- 1} \right)^2\]
Evaluate:
(−3)−2
Express the following as a rational number in the form \[\frac{p}{q}:\]
(−7)−1
Express the following rational numbers with a positive exponent:
\[\left( \frac{3}{4} \right)^{- 2}\]
By what number should \[\left( \frac{1}{2} \right)^{- 1}\] be multiplied so that the product may be equal to \[\left( \frac{- 4}{7} \right)^{- 1} ?\]
\[\left( \frac{- 1}{2} \right)^5 \times \left( \frac{- 1}{2} \right)^3\] is equal to
Evaluate.
(5−1 × 2−1))× 6−1
The multiplicative inverse of `(3/2)^2` is not equal to `(2/3)^-2`.
Express 16–2 as a power with the base 2.