Advertisements
Advertisements
Question
Options
- \[\frac{2}{3}\]
- \[- \frac{2}{3}\]
- \[\frac{3}{2}\]
none of these
Solution
\[- \frac{2}{3}\]
We have:
\[\left( \frac{- 3}{2} \right)^{- 1}\] `=1/((-3)/2)` → (a−1 = 1/a)
`=2/(-3)`
APPEARS IN
RELATED QUESTIONS
Simplify.
`(3^(-5) xx 10^(-5) xx 125)/(5^(-7) xx 6^(-5))`
Find the value of the following:
3−1 + 4−1
Find the value of the following:
(3−1 + 4−1 + 5−1)0
By what number should \[\left( \frac{1}{2} \right)^{- 1}\] be multiplied so that the product may be equal to \[\left( - \frac{4}{7} \right)^{- 1} ?\]
Express the following rational numbers with a negative exponent:
Express the following rational numbers with a positive exponent:
Simplify:
By what number should \[\left( \frac{5}{3} \right)^{- 2}\] be multiplied so that the product may be \[\left( \frac{7}{3} \right)^{- 1} ?\]
The multiplicative inverse of 1010 is ______.
The multiplicative inverse of `(3/2)^2` is not equal to `(2/3)^-2`.