Advertisements
Advertisements
Question
Express the following rational numbers with a negative exponent:
\[3^5\]
Sum
Solution
\[ \left( 3 \right)^5 \]
\[ = \left( \frac{1}{3} \right)^{- 5} \left[ \because a^{- n} = \frac{1}{a^n} \right]\]
shaalaa.com
Is there an error in this question or solution?
APPEARS IN
RELATED QUESTIONS
Simplify:
\[\left( 3^{- 1} \times 4^{- 1} \right)^{- 1} \times 5^{- 1}\]
Simplify:
\[\left( 3^2 + 2^2 \right) \times \left( \frac{1}{2} \right)^3\]
Express the following rational numbers with a positive exponent:
\[\left\{ \left( \frac{3}{2} \right)^4 \right\}^{- 2}\]
Simplify:
\[\left\{ \left( \frac{2}{3} \right)^2 \right\}^3 \times \left( \frac{1}{3} \right)^{- 4} \times 3^{- 1} \times 6^{- 1}\]
Find x, if
\[\left( \frac{5}{4} \right)^{- x} \div \left( \frac{5}{4} \right)^{- 4} = \left( \frac{5}{4} \right)^5\]
\[\left\{ \left( \frac{1}{3} \right)^2 \right\}^4\] is equal to
Expand the following numbers using exponents.
1025.63
The multiplicative inverse of (– 4)–2 is (4)–2.
Simplify and express the result in power notation with positive exponent.
`(−3)^4 × (5/3)^4`
Simplify and express the result in power notation with positive exponent.
2−3 × (−7)−3