Advertisements
Advertisements
प्रश्न
\[\left( \frac{- 3}{2} \right)^{- 1}\] is equal to
पर्याय
- \[\frac{2}{3}\]
- \[- \frac{2}{3}\]
- \[\frac{3}{2}\]
none of these
MCQ
बेरीज
उत्तर
\[- \frac{2}{3}\]
We have:
\[\left( \frac{- 3}{2} \right)^{- 1}\] `=1/((-3)/2)` → (a−1 = 1/a)
`=2/(-3)`
shaalaa.com
या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
APPEARS IN
संबंधित प्रश्न
Simplify and express the result in power notation with positive exponent.
`(1/2^3)^2`
Simplify:
\[\left( 3^{- 1} \times 4^{- 1} \right)^{- 1} \times 5^{- 1}\]
Simplify:
\[\left[ \left( \frac{1}{3} \right)^{- 3} - \left( \frac{1}{2} \right)^{- 3} \right] \div \left( \frac{1}{4} \right)^{- 3}\]
Express the following as a rational number in the form \[\frac{p}{q}:\]
\[\left( \frac{1}{4} \right)^{- 1}\]
Simplify:
\[\left( 2^{- 1} + 3^{- 1} \right)^{- 1}\]
Simplify:
\[\left( 4^{- 1} - 5^{- 1} \right) \div 3^{- 1}\]
Express the following rational numbers with a positive exponent:
\[4^3 \times 4^{- 9}\]
Express the following rational numbers with a positive exponent:
\[\left\{ \left( \frac{3}{2} \right)^4 \right\}^{- 2}\]
By what number should (−15)−1 be divided so that the quotient may be equal to (−5)−1?
The multiplicative inverse of `(- 5/9)^99` is ______.