Advertisements
Advertisements
प्रश्न
Simplify:
\[\left( 2^{- 1} + 3^{- 1} \right)^{- 1}\]
बेरीज
उत्तर
\[\left( 2^{- 1} + 3^{- 1} \right)^{- 1} = \left( \frac{1}{2} + \frac{1}{3} \right)^{- 1} {\to (a}^{- 1} = 1/a) \]
\[ = \left( \frac{5}{6} \right)^{- 1} = \frac{6}{5} {\to (a}^{- 1} = 1/a)\]
\[ = \left( \frac{5}{6} \right)^{- 1} = \frac{6}{5} {\to (a}^{- 1} = 1/a)\]
shaalaa.com
या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
APPEARS IN
संबंधित प्रश्न
Simplify.
`(25 xx t^(-4))/(5^(-3) xx10xxt^(-8)) (t != 0)`
Write the following in exponential form:
\[\left( \frac{2}{5} \right)^{- 2} \times \left( \frac{2}{5} \right)^{- 2} \times \left( \frac{2}{5} \right)^{- 2}\]
Evaluate:
\[\left( \frac{- 1}{2} \right)^{- 1}\]
Simplify:
\[\left\{ 5^{- 1} \div 6^{- 1} \right\}^3\]
Simplify:
\[\left( 4^{- 1} - 5^{- 1} \right) \div 3^{- 1}\]
Express the following rational numbers with a positive exponent:
\[4^3 \times 4^{- 9}\]
\[\left( \frac{2}{3} \right)^{- 5} \times \left( \frac{5}{7} \right)^{- 5}\] is equal to
Expand the following numbers using exponents.
1025.63
Express 3–5 × 3–4 as a power of 3 with positive exponent.
Predicting the ones digit, copy and complete this table and answer the questions that follow.
Powers Table | ||||||||||
x | 1x | 2x | 3x | 4x | 5x | 6x | 7x | 8x | 9x | 10x |
1 | 1 | 2 | ||||||||
2 | 1 | 4 | ||||||||
3 | 1 | 8 | ||||||||
4 | 1 | 16 | ||||||||
5 | 1 | 32 | ||||||||
6 | 1 | 64 | ||||||||
7 | 1 | 128 | ||||||||
8 | 1 | 256 | ||||||||
Ones Digits of the Powers |
1 | 2, 4, 8, 6 |
- Describe patterns you see in the ones digits of the powers.
- Predict the ones digit in the following:
- 412
- 920
- 317
- 5100
- 10500
- Predict the ones digit in the following:
- 3110
- 1210
- 1721
- 2910