Advertisements
Advertisements
Question
Simplify:
\[\left( 2^{- 1} + 3^{- 1} \right)^{- 1}\]
Sum
Solution
\[\left( 2^{- 1} + 3^{- 1} \right)^{- 1} = \left( \frac{1}{2} + \frac{1}{3} \right)^{- 1} {\to (a}^{- 1} = 1/a) \]
\[ = \left( \frac{5}{6} \right)^{- 1} = \frac{6}{5} {\to (a}^{- 1} = 1/a)\]
\[ = \left( \frac{5}{6} \right)^{- 1} = \frac{6}{5} {\to (a}^{- 1} = 1/a)\]
shaalaa.com
Is there an error in this question or solution?
APPEARS IN
RELATED QUESTIONS
Evaluate.
3−2
Simplify.
`(3^(-5) xx 10^(-5) xx 125)/(5^(-7) xx 6^(-5))`
Find the value of the following:
(2−1 × 4−1) ÷ 2−2
Find the value of the following:
(5−1 × 2−1) ÷ 6−1
Simplify:
\[\left( 3^2 + 2^2 \right) \times \left( \frac{1}{2} \right)^3\]
Express the following as a rational number in the form \[\frac{p}{q}:\]
(−7)−1
Express the following rational numbers with a positive exponent:
\[\left\{ \left( \frac{3}{2} \right)^4 \right\}^{- 2}\]
\[\left( \frac{3}{4} \right)^5 \div \left( \frac{5}{3} \right)^5\] is equal to
Simplify and express the result in power notation with positive exponent.
`(−3)^4 × (5/3)^4`
Simplify and express the result in power notation with positive exponent.
2−3 × (−7)−3