Advertisements
Advertisements
प्रश्न
Simplify:
\[\left( 4^{- 1} - 5^{- 1} \right) \div 3^{- 1}\]
बेरीज
उत्तर
\[\left( 4^{- 1} - 5^{- 1} \right) \div 3^{- 1}\] `=(1/4-1/5)div1/3` → (a−1 = 1/a)
`=((5-4)/20)xx3`
\[= \frac{1}{20} \times 3\]
\[= \frac{3}{20}\]
shaalaa.com
या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
APPEARS IN
संबंधित प्रश्न
Find the value of the following:
(5−1 × 2−1) ÷ 6−1
Simplify:
\[\left( 2^{- 1} + 3^{- 1} \right)^{- 1}\]
Evaluate:
\[\left( \frac{1}{3} \right)^{- 4}\]
Express the following as a rational number in the form \[\frac{p}{q}:\]
(−7)−1
Express the following as a rational number in the form \[\frac{p}{q}:\]
\[\left( \frac{3}{5} \right)^{- 1} \times \left( \frac{5}{2} \right)^{- 1}\]
Express the following rational numbers with a negative exponent:
\[3^5\]
Express the following rational numbers with a positive exponent:
\[\left( \frac{3}{4} \right)^{- 2}\]
if \[x = \left( \frac{3}{2} \right)^2 \times \left( \frac{2}{3} \right)^{- 4}\], find the value of x−2.
If \[x = \left( \frac{4}{5} \right)^{- 2} \div \left( \frac{1}{4} \right)^2\], find the value of x−1.
\[\left( \frac{- 3}{2} \right)^{- 1}\] is equal to