Advertisements
Advertisements
प्रश्न
Express the following rational numbers with a negative exponent:
उत्तर
\[ \left( \frac{1}{4} \right)^3 \]
\[ = \left( \frac{4}{1} \right)^{- 3} \left[ \because a^{- n} = \frac{1}{a^n} \right]\]
APPEARS IN
संबंधित प्रश्न
Find the value of the following:
\[\left( \frac{1}{2} \right)^{- 1} + \left( \frac{1}{3} \right)^{- 1} + \left( \frac{1}{4} \right)^{- 1}\]
Simplify:
By what number should \[\left( \frac{1}{2} \right)^{- 1}\] be multiplied so that the product may be equal to \[\left( - \frac{4}{7} \right)^{- 1} ?\]
Simplify:
Express the following rational numbers with a negative exponent:
Express the following rational numbers with a positive exponent:
Simplify:
Find x, if \[\left( \frac{1}{4} \right)^{- 4} \times \left( \frac{1}{4} \right)^{- 8} = \left( \frac{1}{4} \right)^{- 4x}\]
\[\left( \frac{3}{4} \right)^5 \div \left( \frac{5}{3} \right)^5\] is equal to