Advertisements
Advertisements
Question
Express the following rational numbers with a negative exponent:
Solution
\[ \left\{ \left( \frac{7}{3} \right)^4 \right\}^{- 3} \]
\[ = \left( \frac{7}{3} \right)^{- 12} \left[ \because \left( a^m \right)^n = a^{mn} \right]\]
APPEARS IN
RELATED QUESTIONS
Find the value of (3−1 + 4−1 + 5−1)0
Find the value of the following:
\[\left( \frac{1}{2} \right)^{- 1} + \left( \frac{1}{3} \right)^{- 1} + \left( \frac{1}{4} \right)^{- 1}\]
Simplify:
Evaluate:
\[\left( \frac{1}{3} \right)^{- 4}\]
\[\left( \frac{3}{4} \right)^5 \div \left( \frac{5}{3} \right)^5\] is equal to
For any two rational numbers a and b, a5 × b5 is equal to
Find the multiplicative inverse of the following.
2– 4
Predicting the ones digit, copy and complete this table and answer the questions that follow.
Powers Table | ||||||||||
x | 1x | 2x | 3x | 4x | 5x | 6x | 7x | 8x | 9x | 10x |
1 | 1 | 2 | ||||||||
2 | 1 | 4 | ||||||||
3 | 1 | 8 | ||||||||
4 | 1 | 16 | ||||||||
5 | 1 | 32 | ||||||||
6 | 1 | 64 | ||||||||
7 | 1 | 128 | ||||||||
8 | 1 | 256 | ||||||||
Ones Digits of the Powers |
1 | 2, 4, 8, 6 |
- Describe patterns you see in the ones digits of the powers.
- Predict the ones digit in the following:
- 412
- 920
- 317
- 5100
- 10500
- Predict the ones digit in the following:
- 3110
- 1210
- 1721
- 2910
Simplify and express the result in power notation with positive exponent.
(3−7 ÷ 3−10) × 3−5