Advertisements
Advertisements
प्रश्न
if \[x = \left( \frac{3}{2} \right)^2 \times \left( \frac{2}{3} \right)^{- 4}\], find the value of x−2.
उत्तर
First, we have to find x.
\[x = \left( \frac{3}{2} \right)^2 \times \left( \frac{2}{3} \right)^{- 4} \]
\[ = \left( \frac{3}{2} \right)^2 \times \left( \frac{3}{2} \right)^4 \]
\[ = \left( \frac{3}{2} \right)^6\] →(a−1 = 1/a)
Hence, x−2 is:
\[x^{- 2} = \left( \left( \frac{3}{2} \right)^6 \right)^{- 2} \]
\[ = \left( \frac{3}{2} \right)^{- {12}^{}} \]
\[ = \left( \frac{2}{3} \right)^{12}\] →(a−1 = 1/a)
APPEARS IN
संबंधित प्रश्न
Simplify.
`(25 xx t^(-4))/(5^(-3) xx10xxt^(-8)) (t != 0)`
Find the value of the following:
3−1 + 4−1
Find the value of the following:
\[\left\{ \left( \frac{1}{3} \right)^{- 1} - \left( \frac{1}{4} \right)^{- 1} \right\}^{- 1}\]
Simplify:
Simplify:
Evaluate:
\[\left( \frac{- 1}{2} \right)^{- 1}\]
Express the following as a rational number in the form \[\frac{p}{q}:\]
Simplify:
For any two non-zero rational numbers a and b, a4 ÷ b4 is equal to
For a non zero rational number a, (a3)−2 is equal to