Advertisements
Advertisements
Question
Simplify:
\[\left( 5^{- 1} \div 6^{- 1} \right)^3\]
Sum
Solution
`(5^(-1)div6^(-1))^3=(1/5div1/6)^3` `->(a^(-1)=1/a)`
`=(1/5xx6)^3`
`(6/5)^3`
= \[\frac{\left( 6 \right)^3}{\left( 5 \right)^3}\] → ((a/b)n = (an)/(bn) )
= \[\frac{216}{125}\]
shaalaa.com
Is there an error in this question or solution?
APPEARS IN
RELATED QUESTIONS
Simplify:
\[\left( 2^2 + 3^2 - 4^2 \right) \div \left( \frac{3}{2} \right)^2\]
Write the following in exponential form:
\[\left( \frac{2}{5} \right)^{- 2} \times \left( \frac{2}{5} \right)^{- 2} \times \left( \frac{2}{5} \right)^{- 2}\]
Evaluate:
5−2
Express the following as a rational number in the form \[\frac{p}{q}:\]
6−1
Express the following rational numbers with a negative exponent:
\[\left\{ \left( \frac{7}{3} \right)^4 \right\}^{- 3}\]
Find x, if
\[\left( \frac{8}{3} \right)^{2x + 1} \times \left( \frac{8}{3} \right)^5 = \left( \frac{8}{3} \right)^{x + 2}\]
\[\left( \frac{- 1}{2} \right)^5 \times \left( \frac{- 1}{2} \right)^3\] is equal to
Express 3–5 × 3–4 as a power of 3 with positive exponent.
Express 16–2 as a power with the base 2.
Simplify and express the result in power notation with positive exponent.
`(−3)^4 × (5/3)^4`