Advertisements
Advertisements
प्रश्न
Simplify and express the result in power notation with positive exponent.
`(−3)^4 × (5/3)^4`
सोपे रूप द्या
उत्तर
`(−3)^4 × (5/3)^4`
= `(-1)^4 xx (3)^4 xx (5)^4/(3)^4`
= `3^4/3^4 xx 5^4`
= `3^(4-4) xx 5^4`
= 30 × 54 ...`[∵ a^m/a^n = a^(m-n)]`
= 1 × 54
= (5)4
shaalaa.com
या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
संबंधित प्रश्न
Find the value of the following:
(3−1 + 4−1 + 5−1)0
Find the value of the following:
\[\left( \frac{1}{2} \right)^{- 2} + \left( \frac{1}{3} \right)^{- 2} + \left( \frac{1}{4} \right)^{- 2}\]
Simplify:
\[\left( 2^2 + 3^2 - 4^2 \right) \div \left( \frac{3}{2} \right)^2\]
By what number should 5−1 be multiplied so that the product may be equal to (−7)−1?
Express the following rational numbers with a negative exponent:
\[\left\{ \left( \frac{3}{2} \right)^4 \right\}^{- 3}\]
Find x, if
\[\left( \frac{5}{4} \right)^{- x} \div \left( \frac{5}{4} \right)^{- 4} = \left( \frac{5}{4} \right)^5\]
Find the value of x for which 52x ÷ 5−3 = 55.
\[\left( \frac{- 1}{5} \right)^3 \div \left( \frac{- 1}{5} \right)^8\] is equal to
\[\left( \frac{1}{5} \right)^0\] is equal to
Express 3–5 × 3–4 as a power of 3 with positive exponent.