Advertisements
Advertisements
प्रश्न
Simplify:
\[\left( 2^{- 1} + 3^{- 1} \right)^{- 1}\]
योग
उत्तर
\[( 2^{- 1} + 3^{- 1} )^{- 1} = \left( \frac{1}{2} + \frac{1}{3} \right)^{- 1}\]
=\[\left( \frac{5}{6} \right)^{- 1}\]
\[= \frac{1}{5/6}\] → (a−1 = 1/a)
\[= \frac{6}{5}\]
shaalaa.com
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
APPEARS IN
संबंधित प्रश्न
Express the following as a rational number of the form \[\frac{p}{q},\] where p and q are integers and q ≠ 0.
2−3
Simplify:
\[\left( 3^2 + 2^2 \right) \times \left( \frac{1}{2} \right)^3\]
By what number should \[\left( \frac{1}{2} \right)^{- 1}\] be multiplied so that the product may be equal to \[\left( - \frac{4}{7} \right)^{- 1} ?\]
Express the following as a rational number in the form \[\frac{p}{q}:\]
6−1
Simplify:
\[\left( 2^{- 1} + 3^{- 1} \right)^{- 1}\]
By what number should \[\left( \frac{1}{2} \right)^{- 1}\] be multiplied so that the product may be equal to \[\left( \frac{- 4}{7} \right)^{- 1} ?\]
\[\left( \frac{2}{3} \right)^{- 5}\] is equal to
\[\left( \frac{3}{4} \right)^5 \div \left( \frac{5}{3} \right)^5\] is equal to
Find the multiplicative inverse of the following.
2– 4
Expand the following numbers using exponents.
1256.249