Advertisements
Advertisements
प्रश्न
\[\left( \frac{3}{4} \right)^5 \div \left( \frac{5}{3} \right)^5\] is equal to
विकल्प
- \[\left( \frac{3}{4} \div \frac{5}{3} \right)^5\]
`(4/3div3/5)^5`
`(5/3div4/3)^3`
`(3/5div3/4)^3`
उत्तर
We have:
\[\left( \frac{3}{4} \right)^5 \div \left( \frac{5}{3} \right)^5\] =\[\left( \frac{3}{4} \div \frac{5}{3} \right)^5\] → \[a^n \div b^n = \left( a \div b \right)^{n^{}}\]
APPEARS IN
संबंधित प्रश्न
Simplify.
`(3^(-5) xx 10^(-5) xx 125)/(5^(-7) xx 6^(-5))`
Express the following as a rational number of the form \[\frac{p}{q},\] where p and q are integers and q ≠ 0.
Find the value of the following:
3−1 + 4−1
Find the value of the following:
\[\left\{ \left( \frac{1}{3} \right)^{- 1} - \left( \frac{1}{4} \right)^{- 1} \right\}^{- 1}\]
Evaluate:
\[\left( \frac{1}{3} \right)^{- 4}\]
Express the following rational numbers with a positive exponent:
Find the multiplicative inverse of the following.
Expand the following numbers using exponents.
1256.249
Express 16–2 as a power with the base 2.
Predicting the ones digit, copy and complete this table and answer the questions that follow.
Powers Table | ||||||||||
x | 1x | 2x | 3x | 4x | 5x | 6x | 7x | 8x | 9x | 10x |
1 | 1 | 2 | ||||||||
2 | 1 | 4 | ||||||||
3 | 1 | 8 | ||||||||
4 | 1 | 16 | ||||||||
5 | 1 | 32 | ||||||||
6 | 1 | 64 | ||||||||
7 | 1 | 128 | ||||||||
8 | 1 | 256 | ||||||||
Ones Digits of the Powers |
1 | 2, 4, 8, 6 |
- Describe patterns you see in the ones digits of the powers.
- Predict the ones digit in the following:
- 412
- 920
- 317
- 5100
- 10500
- Predict the ones digit in the following:
- 3110
- 1210
- 1721
- 2910