Advertisements
Advertisements
प्रश्न
Express the following as a rational number of the form \[\frac{p}{q},\] where p and q are integers and q ≠ 0.
\[\frac{1}{3^{- 2}}\]
योग
उत्तर
We know that
\[a^{- n} = \frac{1}{a^n}\]
`1/(3^(-2))=3^2=9`
`1/(3^(-2))=3^2=9`
shaalaa.com
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
APPEARS IN
संबंधित प्रश्न
Find the value of the following:
(5−1 × 2−1) ÷ 6−1
Simplify:
\[\left[ \left( \frac{1}{3} \right)^{- 3} - \left( \frac{1}{2} \right)^{- 3} \right] \div \left( \frac{1}{4} \right)^{- 3}\]
Write the following in exponential form:
\[\left( \frac{2}{5} \right)^{- 2} \times \left( \frac{2}{5} \right)^{- 2} \times \left( \frac{2}{5} \right)^{- 2}\]
Express the following rational numbers with a positive exponent:
\[\left( \frac{5}{4} \right)^{- 3}\]
Cube of \[\frac{- 1}{2}\] is
\[\left( \frac{1}{5} \right)^0\] is equal to
For any two non-zero rational numbers a and b, a4 ÷ b4 is equal to
For a non zero rational number a, (a3)−2 is equal to
Express 3–5 × 3–4 as a power of 3 with positive exponent.
Simplify and express the result in power notation with positive exponent.
`(−3)^4 × (5/3)^4`