Advertisements
Advertisements
प्रश्न
\[\left( \frac{2}{3} \right)^{- 5}\] is equal to
पर्याय
- \[\left( \frac{- 2}{3} \right)^5\]
- \[\left( \frac{3}{2} \right)^5\]
- \[\frac{2x - 5}{3}\]
- \[\frac{2x - 5}{3}\]
MCQ
बेरीज
उत्तर
\[\left( \frac{3}{2} \right)^5\]
Rearrange (2/3)−5 to get a positive exponent.
\[\left( \frac{2}{3} \right)^{- 5} = \frac{1}{\left( \frac{2}{3} \right)^5} \left( a^{- n} = \frac{1}{a^n} \right)\]
\[ = \frac{1}{\frac{2^5}{3^5}} \left\{ \left( \frac{a}{b} \right)^n = \frac{a^n}{b^n} \right\}\]
\[ = \frac{3^5}{2^5}\]
\[ = \left( \frac{3}{2} \right)^5\]
Rearrange (2/3)−5 to get a positive exponent.
\[\left( \frac{2}{3} \right)^{- 5} = \frac{1}{\left( \frac{2}{3} \right)^5} \left( a^{- n} = \frac{1}{a^n} \right)\]
\[ = \frac{1}{\frac{2^5}{3^5}} \left\{ \left( \frac{a}{b} \right)^n = \frac{a^n}{b^n} \right\}\]
\[ = \frac{3^5}{2^5}\]
\[ = \left( \frac{3}{2} \right)^5\]
shaalaa.com
या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
APPEARS IN
संबंधित प्रश्न
Express the following as a rational number of the form \[\frac{p}{q},\] where p and q are integers and q ≠ 0.
2−3
Find the value of the following:
(3−1 + 4−1 + 5−1)0
Find the value of the following:
\[\left( \frac{1}{2} \right)^{- 2} + \left( \frac{1}{3} \right)^{- 2} + \left( \frac{1}{4} \right)^{- 2}\]
By what number should (−15)−1 be divided so that the quotient may be equal to (−5)−1?
Express the following as a rational number in the form \[\frac{p}{q}:\]
6−1
Express the following rational numbers with a negative exponent:
\[\left( \frac{1}{4} \right)^3\]
Express the following rational numbers with a positive exponent:
\[\left( \frac{3}{4} \right)^{- 2}\]
Simplify:
\[\left\{ \left( \frac{2}{3} \right)^2 \right\}^3 \times \left( \frac{1}{3} \right)^{- 4} \times 3^{- 1} \times 6^{- 1}\]
\[\left( \frac{1}{5} \right)^0\] is equal to
For a fixed base, if the exponent decreases by 1, the number becomes ______.