Advertisements
Advertisements
प्रश्न
For a fixed base, if the exponent decreases by 1, the number becomes ______.
पर्याय
One-tenth of the previous number.
Ten times of the previous number.
Hundredth of the previous number.
Hundred times of the previous number.
उत्तर
For a fixed base, if the exponent decreases by 1, the number becomes one-tenth of the previous number.
Explanation:
If the exponent is decreased by 1, then for the fixed base, the number becomes one-tenth of the previous number.
E.g. - For 105, exponent decrease by 1
⇒ `10^(5 - 1) = 10^4`
⇒ `10^4/10^5 = 1/10`
APPEARS IN
संबंधित प्रश्न
Find the value of m for which 5m ÷5−3 = 55.
Evaluate:
(−3)−2
Express the following rational numbers with a positive exponent:
Express the following rational numbers with a positive exponent:
Express the following rational numbers with a positive exponent:
By what number should 5−1 be multiplied so that the product may be equal to (−7)−1?
Find x, if \[\left( \frac{1}{4} \right)^{- 4} \times \left( \frac{1}{4} \right)^{- 8} = \left( \frac{1}{4} \right)^{- 4x}\]
Find the value of x for which 52x ÷ 5−3 = 55.
Find the value of `(1/2)^(-2)+(1/3)^(-2)+(1/4)^(-2)`