Advertisements
Advertisements
प्रश्न
Express the following as a rational number in the form \[\frac{p}{q}:\]
\[\left( \frac{3}{5} \right)^{- 1} \times \left( \frac{5}{2} \right)^{- 1}\]
योग
उत्तर
\[\left( \frac{3}{5} \right)^{- 1} \times \left( \frac{5}{2} \right)^{- 1}\] `= 1/(3/5)xx1/(5/2)` → (a−1 = 1/a)
\[= \frac{5}{3} \times \frac{2}{5}\]
\[= \frac{2}{3}\]
shaalaa.com
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
APPEARS IN
संबंधित प्रश्न
Express the following as a rational number of the form \[\frac{p}{q},\] where p and q are integers and q ≠ 0.
\[\frac{1}{3^{- 2}}\]
Find the value of the following:
(5−1 × 2−1) ÷ 6−1
Simplify:
\[\left( 4^{- 1} \times 3^{- 1} \right)^2\]
Evaluate:
5−2
Simplify:
\[\left\{ \left( \frac{1}{2} \right)^{- 1} \times ( - 4 )^{- 1} \right\}^{- 1}\]
\[\left( \frac{2}{3} \right)^{- 5}\] is equal to
\[\left( \frac{- 2}{5} \right)^7 \div \left( \frac{- 2}{5} \right)^5\] is equal to
\[\left( \frac{2}{3} \right)^{- 5} \times \left( \frac{5}{7} \right)^{- 5}\] is equal to
The multiplicative inverse of `(3/2)^2` is not equal to `(2/3)^-2`.
The expression for 4–3 as a power with the base 2 is 26.