Advertisements
Advertisements
प्रश्न
The expression for 4–3 as a power with the base 2 is 26.
विकल्प
True
False
उत्तर
This statement is False.
Explanation:
Using law of exponents, `a^-m = 1/a^m`
∴ `4^-3 = 1/44^3`
= `1/(2^2)^3` ...[∵ 2 × 2 = 4, (am)n = (a)mn]
= `1/(2)^6`
APPEARS IN
संबंधित प्रश्न
Evaluate.
`(1/2)^(-5)`
Find the value of the following:
\[\left\{ \left( \frac{1}{3} \right)^{- 1} - \left( \frac{1}{4} \right)^{- 1} \right\}^{- 1}\]
By what number should 5−1 be multiplied so that the product may be equal to (−7)−1?
Evaluate:
\[\left( \frac{1}{3} \right)^{- 4}\]
Express the following rational numbers with a negative exponent:
Express the following rational numbers with a negative exponent:
Express the following rational numbers with a positive exponent:
By what number should \[\left( \frac{5}{3} \right)^{- 2}\] be multiplied so that the product may be \[\left( \frac{7}{3} \right)^{- 1} ?\]
If \[x = \left( \frac{4}{5} \right)^{- 2} \div \left( \frac{1}{4} \right)^2\], find the value of x−1.