Advertisements
Advertisements
प्रश्न
The expression for 4–3 as a power with the base 2 is 26.
पर्याय
True
False
उत्तर
This statement is False.
Explanation:
Using law of exponents, `a^-m = 1/a^m`
∴ `4^-3 = 1/44^3`
= `1/(2^2)^3` ...[∵ 2 × 2 = 4, (am)n = (a)mn]
= `1/(2)^6`
APPEARS IN
संबंधित प्रश्न
Simplify and express the result in power notation with positive exponent.
(−4)5 ÷ (−4)8
Simplify.
`(3^(-5) xx 10^(-5) xx 125)/(5^(-7) xx 6^(-5))`
Find the value of the following:
\[\left\{ \left( \frac{1}{3} \right)^{- 1} - \left( \frac{1}{4} \right)^{- 1} \right\}^{- 1}\]
Find the value of the following:
Simplify:
By what number should \[\left( \frac{5}{3} \right)^{- 2}\] be multiplied so that the product may be \[\left( \frac{7}{3} \right)^{- 1} ?\]
Find x, if
Find the value of (2−1 × 4−1) ÷2−2.
The multiplicative inverse of (– 4)–2 is (4)–2.