Advertisements
Advertisements
प्रश्न
Simplify:
\[\left\{ \left( \frac{1}{2} \right)^{- 1} \times ( - 4 )^{- 1} \right\}^{- 1}\]
योग
उत्तर
\[\left\{ \left( \frac{1}{2} \right)^{- 1} \times ( - 4 )^{- 1} \right\}^{- 1}\] `=((1/(1/2))xx(1/(-4)))^(-1)` `->(a^(-1)=1/a)`
`=(2xx(1/-4))^(-1)`
`=(1/(-2))^(-1)`
`=1/(1/(-2))` `->(a^(-1)=1/a)`
= -2
shaalaa.com
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
APPEARS IN
संबंधित प्रश्न
Evaluate.
3−2
Express the following as a rational number of the form \[\frac{p}{q},\] where p and q are integers and q ≠ 0. (−4)−2
Simplify:
\[\left[ \left\{ \left( \frac{- 1}{4} \right)^2 \right\}^{- 2} \right]^{- 1}\]
\[\left( \frac{- 1}{2} \right)^5 \times \left( \frac{- 1}{2} \right)^3\] is equal to
\[\left( \frac{- 2}{5} \right)^7 \div \left( \frac{- 2}{5} \right)^5\] is equal to
For any two non-zero rational numbers a and b, a4 ÷ b4 is equal to
Find the multiplicative inverse of the following.
2– 4
Expand the following numbers using exponents.
1025.63
The multiplicative inverse of `(- 5/9)^99` is ______.
The multiplicative inverse of `(3/2)^2` is not equal to `(2/3)^-2`.