Advertisements
Advertisements
प्रश्न
Which of the following is not reciprocal of \[\left( \frac{2}{3} \right)^4 ?\]
विकल्प
- \[\left( \frac{3}{2} \right)^4\]
- \[\left( \frac{2}{3} \right)^{- 4}\]
- \[\left( \frac{3}{2} \right)^{- 4}\]
- \[\frac{3^4}{2^4}\]
MCQ
योग
उत्तर
\[\left( \frac{3}{2} \right)^{- 4}\]
The reciprocal of `(2/3)^4` is `(3/2)^4`
Therefore, option (a) is the correct answer.
Option (b) is just re-expressing the number with a negative exponent.
Option (d) is obtained by working out the exponent.
Hence,option (c) is not the reciprocal of `(2/3)^4`.
The reciprocal of `(2/3)^4` is `(3/2)^4`
Therefore, option (a) is the correct answer.
Option (b) is just re-expressing the number with a negative exponent.
Option (d) is obtained by working out the exponent.
Hence,option (c) is not the reciprocal of `(2/3)^4`.
shaalaa.com
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
APPEARS IN
संबंधित प्रश्न
Evaluate.
`(5/8)^(-7) xx (8/5)^(-4)`
Simplify:
\[\left( 3^2 + 2^2 \right) \times \left( \frac{1}{2} \right)^3\]
Express the following as a rational number in the form \[\frac{p}{q}:\]
\[( - 4 )^{- 1} \times \left( \frac{- 3}{2} \right)^{- 1}\]
Simplify:
\[\left\{ 5^{- 1} \div 6^{- 1} \right\}^3\]
Simplify:
\[\left\{ 3^{- 1} \times 4^{- 1} \right\}^{- 1} \times 5^{- 1}\]
Express the following rational numbers with a negative exponent:
\[\left\{ \left( \frac{7}{3} \right)^4 \right\}^{- 3}\]
Express the following rational numbers with a positive exponent:
\[\left( \frac{5}{4} \right)^{- 3}\]
Simplify:
\[\left( 3^2 - 2^2 \right) \times \left( \frac{2}{3} \right)^{- 3}\]
For any two non-zero rational numbers a and b, a4 ÷ b4 is equal to
Simplify and express the result in power notation with positive exponent.
`(−3)^4 × (5/3)^4`