Advertisements
Advertisements
प्रश्न
Factorize the following expressions:
(a + b)3 – 8(a – b)3
उत्तर
(a + b)3 - 8(a - b)3
= (a + b)3 - [2(a - b)]3
= (a + b)3 - (2a - 2b)3 [Using a3 - b3 = (a - b)(a2 + ab + b2 ) ]
= (a + b - (2a - 2b))((a + b)2 + (a + b)(2a - 2b) + (2a - 2b)2)
= (a + b - 2a + 2b)(a2 + b2 + 2ab + (a + b)(2a - 2b) + (2a - 2b)2) [∵ (a + b)2 = a2 + b2 + 2ab]
= (3b - a)(a2 + b2 + 2ab + 2a2 - 2ab + 2ab - 2b2 + (2a - 2b)2)
= (3b - a)(3a2 + 2ab - b2 + (2a - 2b)2 )
= (3b - a)(3a2 + 2ab - b2 + 4a2 + 4b2 - 8ab) [∵ (a - b)2 = a2 + b2 - 2ab]
= (3b - a )(3a2 + 4a2 - b2 + 4b2 + 2ab - 8ab)
= (3b - a )(7a2 + 3b2 - 6ab)
∴ (a + b)3 - 8(a - b)3 = (-a + 3b)(7a2 - 6ab + 3b2)
APPEARS IN
संबंधित प्रश्न
Factorize (a - b + c)2 + (b - c + a)2 + 2(a - b + c) (b - c + a)
Factorize `9(2a - b)^2 - 4(2a - b) - 13`
What are the possible expressions for the dimensions of the cuboid whose volume is 3x2 - 12x.
Factorize the following expressions:
x4y4 - xy
`2sqrt2a^3 + 3sqrt3b^3 + c^3 - 3 sqrt6abc`
Evaluate: (4x2 - 4x + 1)(2x3 - 3x2 + 2)
Write the coefficient of x2 and x in the following polynomials
`sqrt(3)x^2 + sqrt(2)x + 0.5`
Write the coefficient of x2 and x in the following polynomials
`x^2 - 7/2 x + 8`
When y = –1, the value of the expression 2y – 1 is 3
Write the variables, constant and terms of the following expression
18 + x – y