Advertisements
Advertisements
Question
Factorize `[x^2 + 1/x^2] - 4[x + 1/x] + 6`
Solution
`= x^2 + 1/x^2 - 4x - 4/x + 4 + 2`
`= x^2 + 1/x^2 + 4 + 2 - 4/x - 4x`
`= (x^2) + (1/x)^2 + (-2)^2 + 2 xx x xx x 1/x + 2x 1/x xx (-2) + 2(-2)x`
Using identity
a2 + b2 + c2 + 2ab + 2bc + 2ca = (a + b + c)2
We get
`= [x + 1/x + (-2)]^2`
`= [x + 1/x - 2]^2`
`= [x + 1/x - 2][x + 1/x - 2]`
`∴ [x^2 + 1/x^2] - 4[x + 1/x] + 6 = [x + 1/x - 2][x + 1/x - 2]`
APPEARS IN
RELATED QUESTIONS
Factorize `6ab - b^2 + 12ac - 2bc`
Factorize `9(2a - b)^2 - 4(2a - b) - 13`
Factorize the following expressions:
a3 + b3 + a + b
If x2 + y2 = 29 and xy = 2, find the value of x4 + y4 .
Mark the correct alternative in each of the following: The factors of a2 − 1 − 2x − x2 are
If x3 − 3x2 + 3x − 7 = (x + 1) (ax2 + bx + c), then a + b + c =
Multiply: (2x + 5y + 6)(3x + y - 8)
Write the coefficient of x2 and x in the following polynomials
`x^2 - 7/2 x + 8`
The variable in the expression 16x – 7 is __________
Number of terms in the expression a2 + bc × d is ______.