Advertisements
Advertisements
प्रश्न
By using identity evaluate the following:
`1 + 1/8 - 27/8`
उत्तर
We know that a3 + b3 + c3 = 0 then a + b + c = 3abc
`1 + 1/8 - 27/8 = 1^3 + (1/2)^3 - (3/2)^3`
a + b + c = `1 + 1/2 - 3/2`
= `(2 + 1 - 3)/2`
= `0/2`
= 0
`1 + 1/8 - 27/8 = 3(1) xx 1/2 xx ((-3)/2)`
= `(-9)/4`
APPEARS IN
संबंधित प्रश्न
Find the following product: (x − 11) (x + 4)
Find the following product: \[\left( y^2 + \frac{5}{7} \right)\left( y^2 - \frac{14}{5} \right)\]
Evaluate the following: 34 × 36
Expand the following:
(2p + 3)(2p – 4)(2p – 5)
Simplify: (2a + 3b + 4c) (4a2 + 9b2 + 16c2 – 6ab – 12bc – 8ca)
Simplify:
`(3/4x - 4/3y)^2 + 2xy`
Simplify:
(a – b) (a2 + b2 + ab) – (a + b) (a2 + b2 – ab)
Expand the following, using suitable identities.
`(4/5a + 5/4b)^2`
Expand the following, using suitable identities.
(x + 3)(x + 7)
Expand the following, using suitable identities.
`((2x)/3 - 2/3)((2x)/3 + (2a)/3)`