Advertisements
Advertisements
प्रश्न
By using identity evaluate the following:
`1 + 1/8 - 27/8`
उत्तर
We know that a3 + b3 + c3 = 0 then a + b + c = 3abc
`1 + 1/8 - 27/8 = 1^3 + (1/2)^3 - (3/2)^3`
a + b + c = `1 + 1/2 - 3/2`
= `(2 + 1 - 3)/2`
= `0/2`
= 0
`1 + 1/8 - 27/8 = 3(1) xx 1/2 xx ((-3)/2)`
= `(-9)/4`
APPEARS IN
संबंधित प्रश्न
If 2x + 3y = 14 and 2x − 3y = 2, find the value of xy.
[Hint: Use (2x + 3y)2 − (2x − 3y)2 = 24xy]
Find the following product: (3x − 4y) (2x − 4y)
Find the following product: \[\left( y^2 + \frac{5}{7} \right)\left( y^2 - \frac{14}{5} \right)\]
If (x + y + z) = 9 and (xy + yz + zx) = 26, then find the value of x2 + y2 + z2
If 2x – 3y – 4z = 0, then find 8x3 – 27y3 – 64z3
Simplify:
(3x + 2y)2 + (3x – 2y)2
Expand the following, using suitable identities.
`((2x)/3 - 2/3)((2x)/3 + (2a)/3)`
Using suitable identities, evaluate the following.
(995)2
Using suitable identities, evaluate the following.
47 × 53
Perform the following division:
(3pqr – 6p2q2r2) ÷ 3pq