Advertisements
Advertisements
प्रश्न
Simplify:
(a – b) (a2 + b2 + ab) – (a + b) (a2 + b2 – ab)
उत्तर
We have,
(a – b) (a2 + b2 + ab) – (a + b) (a2 + b2 – ab) = a(a2 + b2 + ab) – b(a2 + b2 + ab) – a(a2 + b2 – ab) – b(a2 + b2 – ab)
= a3 + ab2 + a2b – ba2 – b3 – ab2 – a3 – ab2 + a2b – ba2 – b3 + ab2
= (a3 – a3) + (– b3 – b3) + (ab2 – ab2) + (a2b – a2b + a2b – a2b)
= 0 – 2b3 + 0 + 0 + 0
= – 2b3
APPEARS IN
संबंधित प्रश्न
Simplify the following using the identities: \[\frac{{58}^2 - {42}^2}{16}\]
Find the following product: (x − 11) (x + 4)
Find the following product: (p2 + 16) \[\left( p^2 - \frac{1}{4} \right)\]
Evaluate the following: 103 × 96
Simplify:
(pq – qr)2 + 4pq2r
Expand the following, using suitable identities.
`((4x)/5 + y/4)((4x)/5 + (3y)/4)`
Expand the following, using suitable identities.
(x2 + y2)(x2 – y2)
Using suitable identities, evaluate the following.
(995)2
Perform the following division:
(3pqr – 6p2q2r2) ÷ 3pq
Perform the following division:
(– qrxy + pryz – rxyz) ÷ (– xyz)