Advertisements
Advertisements
Question
Simplify:
(a – b) (a2 + b2 + ab) – (a + b) (a2 + b2 – ab)
Solution
We have,
(a – b) (a2 + b2 + ab) – (a + b) (a2 + b2 – ab) = a(a2 + b2 + ab) – b(a2 + b2 + ab) – a(a2 + b2 – ab) – b(a2 + b2 – ab)
= a3 + ab2 + a2b – ba2 – b3 – ab2 – a3 – ab2 + a2b – ba2 – b3 + ab2
= (a3 – a3) + (– b3 – b3) + (ab2 – ab2) + (a2b – a2b + a2b – a2b)
= 0 – 2b3 + 0 + 0 + 0
= – 2b3
APPEARS IN
RELATED QUESTIONS
Simplify the following using the identities: \[\frac{198 \times 198 - 102 \times 102}{96}\]
Find the following product: (x + 7) (x − 5)
Find the following product: \[\left( x + \frac{4}{3} \right)\left( x + \frac{3}{4} \right)\]
Find the following product: (2x2 − 3) (2x2 + 5)
Find the following product: (3x2 − 4xy) (3x2 − 3xy)
Simplify: (x – 2y + 3z) (x2 + 4y2 + 9z2 + 2xy + 6yz – 3xz)
If 2x – 3y – 4z = 0, then find 8x3 – 27y3 – 64z3
On dividing 57p2qr by 114pq, we get ______.
Using suitable identities, evaluate the following.
(52)2
Carry out the following division:
76x3yz3 ÷ 19x2y2