Advertisements
Advertisements
प्रश्न
Explain what you understand by the de Broglie wavelength of an electron. Will an electron at rest have an associated de Broglie wavelength? Justify your answer.
उत्तर
An electron exhibits wave nature under certain conditions. Matter waves, de Broglie waves, and Schrodinger waves are all names for waves associated with a moving electron. The de Broglie wavelength of these matter waves is given by λ = h/p, where h is Planck's constant, and p is the magnitude of the electron's momentum.
APPEARS IN
संबंधित प्रश्न
State the importance of Davisson and Germer experiment.
What is the speed of a proton having de Broglie wavelength of 0.08 Å?
The de Broglie wavelengths associated with an electron and a proton are the same. What will be the ratio of (i) their momenta (ii) their kinetic energies?
Find the ratio of the de Broglie wavelengths of an electron and a proton when both are moving with the (a) same speed, (b) the same kinetic energy, and (c) the same momentum. State which of the two will have a longer wavelength in each case.
According to De-Broglie, the waves are associated with ______
The momentum of a photon of energy 1 MeV in kg m/s will be ______
The de Broglie wavelength associated with photon is, ____________.
What is the momentum of a photon having frequency 1.5 x 1013 Hz?
If the radius of the circular path and frequency of revolution of a particle of mass m are doubled, then the change in its kinetic energy will be (Ei and Ef are the initial and final kinetic energies of the particle respectively.)
The wavelength '`lambda`' of a photon and de-Broglie wavelength of an electron have same value. The ratio of energy of a photon to kinetic energy of electron is (m = mass of electron, c = velocity of light, h = Planck's constant) ____________.
If '`lambda_1`' and '`lambda_2`' are de-Broglie wavelengths for electrons in first and second Bohr orbits in hydrogen atom, then the ratio '`lambda_2`' to '`lambda_1`' is (E1 = -13.6 eV) ____________.
If the kinetic energy of a particle is increased to 16 times its previous value, the percentage change in the de-Broglie wavelength of the particle is ____________.
If the potential difference used to accelerate electrons is doubled, by what factor does the de-Broglie wavelength associated with the electrons change?
According to de-Broglie hypothesis, the ratio of wavelength of an electron and that of photon having same energy 'E' is (m = mass of electron, c = velocity of light) ____________.
A photon of wavelength 3315 Å falls on a photocathode and an electron of energy 3 x 10-19 J is ejected. The threshold wavelength of photon is [Planck's constant (h) = 6.63 x 10-34 J.s, velocity of light (c) = 3 x 108 m/s] ____________.
Explain de-Broglie wavelength.
Obtain an expression for de-Broglie wavelength of wave associated with material particles. The photoelectric work function for metal is 4.2 eV. Find the threshold wavelength.
A proton, a neutron, an electron and an α-particle have same energy. λp, λn, λe and λα are the de Broglie's wavelengths of proton, neutron, electron and α particle respectively, then choose the correct relation from the following :
The energy of an electron having de-Broglie wavelength `λ` is ______.
(h = Plank's constant, m = mass of electron)
An electron of mass m has de-Broglie wavelength λ when accelerated through potential difference V. When proton of mass M, is accelerated through potential difference 9V, the de-Broglie wavelength associated with it will be ______. (Assume that wavelength is determined at low voltage)
An electron is accelerated through a potential difference of 100 volts. Calculate de-Broglie wavelength in nm.
Calculate the de Broglie wavelength associated with an electron moving with a speed of `5 xx 10^6` m/s. `(m_e = 9.1 xx 10^(-31)kg)`