Advertisements
Advertisements
प्रश्न
Explain why the electron gain enthalpy of fluorine is less negative than that of chlorine.
उत्तर
In fluorine, the new electron to be added goes to 2p-subshell while in chlorine, the added electron goes to 3p-subshell. Since the 2p-subshell is relatively small as compared to 3p-subshell, the added electron in small 2p-subshell experiences strong interelectronic repulsions in comparison to that in 3p-subshell in \[\ce{Cl}\]. As a result, the incoming electron does not feel much attraction from the nucleus and therefore, the electron gain enthalpy of F is less negative than that of \[\ce{Cl}\].
APPEARS IN
संबंधित प्रश्न
What is the significance of the terms - ‘isolated gaseous atom’ and ‘ground state’ while defining the ionization enthalpy and electron gain enthalpy?
Hint: Requirements for comparison purposes.
Would you expect the second electron gain enthalpy of O as positive, more negative or less negative than the first? Justify your answer.
Which of the following pair of elements would have a more negative electron gain enthalpy?
O or F
Among halogens, the correct order of amount of energy released in electron gain (electron gain enthalpy) is ______.
The formation of the oxide ion, \[\ce{O2- (g)}\], from oxygen atom requires first an exothermic and then an endothermic step as shown below:
\[\ce{O (g) + e- -> O- (g) ; ∆H^Θ = - 14 kJ mol^{-1}}\]
\[\ce{O- (g) + e- -> O^{2-} (g) ; ∆H^Θ = + 780 kJ mol^{-1}}\]
Thus process of formation of \[\ce{O^{2-}}\] in gas phase is unfavourable even though \[\ce{O^{2-}}\] is isoelectronic with neon. It is due to the fact that,
Which of the following elements will gain one electron more readily in comparison to other elements of their group?
(i) \[\ce{S (g)}\]
(ii) \[\ce{Na (g)}\]
(iii) \[\ce{O (g)}\]
(iv) \[\ce{Cl (g)}\]
Match the correct ionisation enthalpies and electron gain enthalpies of the following elements.
Elements | ∆H1 | ∆H2 | ∆egH | |
(i) Most reactive non-metal | A. | 419 | 3051 | – 48 |
(ii) Most reactive metal | B. | 1681 | 3374 | – 328 |
(iii) Least reactive element e | C. | 738 | 1451 | – 40 |
(iv) Metal forming binary halide | D. | 2372 | 5251 | + 48 |
Electronic configuration of some elements is given in Column I and their electron gain enthalpies are given in Column II. Match the electronic configuration with electron gain enthalpy.
Column (I) | Column (II) |
Electronic configuration | Electron gain enthalpy/kJ mol–1 |
(i) 1s2 2s2 sp6 | (A) – 53 |
(ii) 1s2 2s2 2p6 3s1 | (B) – 328 |
(iii) 1s2 2s2 2p5 | (C) – 141 |
(iv) 1s2 2s2 2p4 | (D) + 48 |
Assertion (A): Electron gain enthalpy becomes less negative as we go down a group.
Reason (R): Size of the atom increases on going down the group and the added electron would be farther from the nucleus.
The correct order of electron gain enthalpy (−ve value) is ______.