Advertisements
Advertisements
प्रश्न
Express the following in the form of a + ib, a, b ∈ R, i = `sqrt(-1)`. State the values of a and b: `(4"i"^8 - 3"i"^9 + 3)/(3"i"^11 - 4"i"^10 - 2)`
उत्तर
`(4"i"^8 - 3"i"^9 + 3)/(3"i"^11 - 4"i"^10 - 2) = (4("i"^4)^2 - 3("i"^4)^2*"i" + 3)/(3("i"^4)^2*"i"^3 - 4("i"^4)^2*"i"^2 - 2)`
Since, i2 = – 1, i3 = – i and i4 = 1
∴ `(4"i"^8 - 3"i"^9 + 3)/(3"i"^11 - 4"i"^10 - 2) = (4(1)^2 - 3(1)^2*"i" + 3)/(3(1)^2(-"i") - 4(1)^2 (-1) - 2)`
= `(4 - 3"i" + 3)/(-3"i" + 4 - 2)`
= `(7 - 3"i")/(2 - 3"i")`
= `((7 - 3"i")(2 + 3"i"))/((2 - 3"i")(2 + 3"i")`
= `(14 + 21"i" - 6"i" - 9"i"^2)/(4 - 9(-1))`
= `(14 + 15"i" - 9(-1))/(4 - 9(-1)`
= `(23 + 15"i")/13`
∴ `(4"i"^8 - 3"i"^9 + 3)/(3"i"^11 - 4"i"^10 - 2) = 23/13 + 15/13 "i"`
∴ a = `23/13 and "b" = 15/13`
APPEARS IN
संबंधित प्रश्न
Write the conjugates of the following complex numbers: 3 + i
Write the conjugates of the following complex numbers: 3 – i
Write the conjugates of the following complex numbers: `-sqrt(5) - sqrt(7) "i"`
Write the conjugates of the following complex numbers: `sqrt(2) + sqrt(3) "i"`
Express the following in the form of a + ib, a, b ∈ R, i = `sqrt(-1)`. State the values of a and b: `("i"(4 + 3"i"))/((1 - "i"))`
Express the following in the form of a + ib, a, b ∈ R, i = `sqrt(-1)`. State the values of a and b: `(3 + 2"i")/(2 - 5"i") + (3 - 2"i")/(2 + 5"i")`
Express the following in the form of a + ib, a, b ∈ R, i = `sqrt(-1)`. State the values of a and b: `(2 + sqrt(-3))/(4 + sqrt(-3))`
Express the following in the form of a + ib, a, b ∈ R, i = `sqrt(-1)`. State the values of a and b: (2 + 3i)(2 – 3i)
Find the value of 1 + i2 + i4 + i6 + i8 + ... + i20.
Show that `(-1 + sqrt(3) i)^3` is a real number.
Show that `(−1 + sqrt3 i)^3` is a real number.
Simplify the following and express in the form a + ib.
`(3i^5 + 2i^7 + i^9)/(i^6 + 2i^8 + 3i^18)`
Show that `(−1+ sqrt3 i)^3` is a real number.
Show that `(−1+ sqrt3 i)^3` is a real number.
Show that `(−1 + sqrt(3) i)^3` is a real number.
Evaluate the following:
`i^35`