Advertisements
Advertisements
प्रश्न
Express the following in the form `p/q`, where p and q are integers and q ≠ 0:
`0.bar001`
उत्तर
Let `x = 0.bar001`
⇒ `x = 0.bar001 = 0.001001` ...(i)
On multiplying both sides of equation (i) by 1000, we get
1000x = 001.001......... ...(ii)
On subtracting equation (i) from equation (ii), we get
1000x – x = 001.001... – (0.001001...)
⇒ 999x = 001
∴ `x = 1/999`
APPEARS IN
संबंधित प्रश्न
Look at several examples of rational numbers in the form `p/q` (q≠0), where p and q are integers with no common factors other than 1 and having terminating decimal representations (expansions). Can you guess what property q must satisfy?
Write three numbers whose decimal expansions are non-terminating non-recurring.
`sqrt(10) xx sqrt(15)` is equal to ______.
If `sqrt(2) = 1.4142`, then `sqrt((sqrt(2) - 1)/(sqrt(2) + 1))` is equal to ______.
Express the following in the form `p/q`, where p and q are integers and q ≠ 0:
0.2
Express the following in the form `p/q`, where p and q are integers and q ≠ 0:
0.888...
Express the following in the form `p/q`, where p and q are integers and q ≠ 0:
0.00323232...
Write the following in decimal form and say what kind of decimal expansion has:
`4 1/8`
Write the following in decimal form and say what kind of decimal expansion has:
`3/13`
Express the following in the form `bb(p/q)`, where p and q are integers and q ≠ 0.
`0.bar001`