Advertisements
Advertisements
प्रश्न
Factorize : 9a2 - (a2 - 4) 2
योग
उत्तर
9a2 - (a2 - 4)2
= (3a)2 - (a2 - 4)2
= [ 3a + (a2 - 4)][ 3a - (a2 - 4)]
= [ 3a + a2 - 4 ][ 3a - a2 + 4 ]
= [ a2 + 3a - 4 ][- a2 + 3a + 4]
= (a + 4)(a - 1)(-a2 + 3a + 4)
= (a + 4)(a - 1)[-(a2 - 3a - 4)]
= - (a + 4)(a - 1)(a - 4)(a + 1)
= (a + 4)(a - 1)(a + 1)(4 - a).
shaalaa.com
Method of Factorisation : Difference of Two Squares
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
APPEARS IN
संबंधित प्रश्न
Factorise : 25a2 - 9b2
Factorise : 4a2b - 9b3
Factorise : 3a5 - 108a3
Factorise : 9(a - 2)2 - 16(a + 2)2
Factorise:
(a2 - 1) (b2 - 1) + 4ab
Factorise : a2 - b2 - (a + b) 2
Factorise the following by the difference of two squares:
64x2 - 121y2
Factorise the following by the difference of two squares:
16a4 - 81b4
Factorise the following:
a2 + b2 - c2 - d2 + 2ab - 2cd
Express each of the following as the difference of two squares:
(x2 - 2x + 3)(x2 + 2x + 3)