Advertisements
Advertisements
प्रश्न
Factorize (a - b + c)2 + (b - c + a)2 + 2(a - b + c) (b - c + a)
उत्तर
Let (a - b + c) = x and (b - c + a ) = y
= x2 + y2 + 2xy
Using identity a2 + b2 + 2ab = (a + b)2
= ( x + y )2
Now, substituting x and y
= (a - b + c + b - c + a)2
Cancelling -b, +b and +c, -c
= (2a )2
= 4a2
∴ (a - b + c)2 + (b - c + a)2 + 2(a - b + c)(b - c + a ) = 4a2
APPEARS IN
संबंधित प्रश्न
Factorize x4 + x2 y2 + y4
Factorize `2x^2 - 5/6x + 1/12`
Factorize the following expressions:
`x^3/216 - 8y^3`
Factorize the following expressions:
(a - 2b)3 - 512b3
Simplify `(173 xx 173 xx 173 xx 127 xx 127 xx 127)/(173 xx 173 xx 173 xx 127 xx 127 xx 127)`
If a2 + b2 + c2 = 20 and a + b + c = 0, find ab + bc + ca.
The value of \[\frac{(2 . 3 )^3 - 0 . 027}{(2 . 3 )^2 + 0 . 69 + 0 . 09}\]
Evaluate: (3c - 5d)(4c - 6d)
Express the following as an algebraic expression:
The sum of x and y minus m.
Which of the following expressions has the value 37?