Advertisements
Advertisements
प्रश्न
Factorize the following expressions:
(a - 2b)3 - 512b3
उत्तर
(a - 2b)3 - 512b3
= (a - 2b)3 - (8b)3
= (a - 2b - 8b)((a - 2b)2 + (a - 2b)8b + (8b)2) [ ∵ a3 - b3 = (a - b)(a2 + ab + b2)]
= (a -10b)(a2 + 4b2 - 4ab + 8b (a - 2b) + (8b)2 ) [ ∵ (a - b)2 = a2 + b2 - 2ab]
= (a -10b)(a2 + 4b2 - 4ab + 8ab -16b2 + 64b2)
= (a = 10b)(a2 + 68b2 -16b2 - 4ab + 8ab)
= (a -10b)(a2 + 52b2 + 4ab)
∴ (a - 2b)3 - 512b3 = (a -10b)(a2 + 4ab + 52b2)
APPEARS IN
संबंधित प्रश्न
Factorize `6ab - b^2 + 12ac - 2bc`
Factorize `x^2 + 5sqrt5x + 30`
Factorize the following expressions:
p3 + 27
Factorize 125x3 - 27 y3 - 225x2 y +135xy2
8x3 + 27y3 - 216z3 + 108xyz
8x3 -125y3 +180xy + 216
Write the value of 253 − 753 + 503.
Divide: 10a3 - 15a2b by - 5a2
Which of the following expressions has the value 37?
Write the coefficient of x2 and x in the following polynomials
`x^2 - 7/2 x + 8`