Advertisements
Advertisements
प्रश्न
Factorize the following:
2l2mn - 3lm2n + 4lmn2
उत्तर
\[\text{ The greatest common factor of the terms }2 l^2 mn, 3l m^2 n\text{ and }4lm n^2\text{ of the expression }2 l^2 mn - 3l m^2 n + 4lm n^2\text{ is }lmn . \]
\[\text{ Also, we can write }2 l^2 mn = lmn \times 2l, 3l m^2 n = lmn \times 3m and 4lm n^2 = lmn \times 4n . \]
\[ \therefore 2 l^2 nm - 3l m^2 n + 4lm n^2 = lmn \times 2l - lmn \times 3m + lmn \times 4n\]
\[ = lmn(2l - 3m + 4n)\]
APPEARS IN
संबंधित प्रश्न
Find the common factors of the terms.
2x, 3x2, 4
Find the common factors of the terms.
3x2y3, 10x3y2, 6x2y2z
Factorise the following expression:
5x2y − 15xy2
Factorise : `x^2 + [a^2 + 1]/a x + 1`
Factorise:
5a2 - b2 - 4ab + 7a - 7b
Factorise : 2(ab + cd) - a2 - b2 + c2 + d2
Factorise : x2(a-b)-y2 (a-b)+z2(a-b)
factorise : 6x3 - 8x2
Factorise xy2 - xz2, Hence, find the value of :
9 x 82 - 9 x 22
Factorise the following by taking out the common factors:
(a - b)2 -2(a - b)