हिंदी
कर्नाटक बोर्ड पी.यू.सी.पीयूसी विज्ञान कक्षा ११

Figure Shows a Capillary Tube of Radius R Dipped into Water. If the Atmospheric Pressure Is P0, the Pressure at Point A Is - Physics

Advertisements
Advertisements

प्रश्न

Figure shows a capillary tube of radius r dipped into water. If the atmospheric pressure is P0, the pressure at point A is

विकल्प

  • P0

  • \[P_0 + \frac{2S}{r}\]

  • \[P_0 - \frac{2S}{r}\]

  • \[P_0 - \frac{4S}{r}\]

MCQ

उत्तर

\[\text{ Here }: \]

\[\text{ Radius of the tube = r }\]

\[\text{ Net upward force due to surface tension  = S }\text{ cos }\theta \times 2\pi r\]

\[\text{ Upward pressure }= \frac{\text{ S } cos \theta \times 2\pi r}{\pi r^2} = \frac{2Scos\theta}{r}\]

\[\text{ Net downward pressure due to atmosphere }= P_o \]

\[ \Rightarrow \text{ Net pressure at A }= P_o - \frac{2Scos\theta}{r}\]

\[\text{ Since }\theta \text{ is small, } \]

\[\text{ cos }\theta \approx 1 . \]

\[ \Rightarrow \text{ Net pressure }= P_o - \frac{2S}{r}\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 14: Some Mechanical Properties of Matter - MCQ [पृष्ठ २९८]

APPEARS IN

एचसी वर्मा Concepts of Physics Vol. 1 [English] Class 11 and 12
अध्याय 14 Some Mechanical Properties of Matter
MCQ | Q 18 | पृष्ठ २९८

संबंधित प्रश्न

A U-tube contains water and methylated spirit separated by mercury. The mercury columns in the two arms are in level with 10.0 cm of water in one arm and 12.5 cm of spirit in the other. What is the specific gravity of spirit?


A barometer tube reads 76 cm of mercury. If the tube is gradually inclined keeping the open end immersed in the mercury reservoir, will the length of mercury column be 76 cm, more than 76 cm or less than 76 cm?


A one meter long glass tube is open at both ends. One end of the tube is dipped into a mercury cup, the tube is kept vertical and the air is pumped out of the tube by connecting the upper end to a suction pump. Can mercury be pulled up into the pump by this process?


The three vessels shown in the following figure have same base area. Equal volumes of a liquid are poured in the three vessels. The force on the base will be


Shows in the following figure a siphon. The liquid shown is water. The pressure difference PB − PAbetween the points A and B is


A barometer kept in an elevator reads 76 cm when it is at rest. If the elevator goes up with increasing speed, the reading will be ______.


A barometer kept in an elevator accelerating upward reads 76 cm. The air pressure in the elevator is


The surface of water in a water tank on the top of a house is 4 m above the tap level. Find the pressure of water at the tap when the tap is closed. Is it necessary to specify that the tap is closed?


The heights of mercury surfaces in the two arms of the manometer shown in figure are 2 cm and 8 cm.
Atmospheric pressure = 1.01 × 105 N−2. Find (a) the pressure of the gas in the cylinder and (b) the pressure of mercury at the bottom of the U tube.


The area of cross section of the wider tube shown in figure is 900 cm2. If the boy standing on the piston weighs 45 kg, find the difference in the levels of water in the two tubes.


If water be used to construct a barometer, what would be the height of water column at standard atmospheric pressure (76 cm of mercury) ?


Water is filled in a rectangular tank of size 3 m × 2 m × 1 m. (a) Find the total force exerted by the water on the bottom surface on the tank. (b) Consider a vertical side of area 2 m × 1 m. Take a horizontal strip of width δx metre in this side, situated at a depth of x metre from the surface of water. Find the force by the water on this strip. (c) Find the torque of the force calculate in part (b) about the bottom edge of this side.
(d) Find the total force by the water on this side.
(e) Find the total torque by the water on the side about the bottom edge. Neglect the atmospheric pressure and take g = 10 ms−2


Water leaks out from an open tank through a hole of area 2 mm2 in the bottom. Suppose water is filled up to a height of 80 cm and the area of cross section of the tanks is 0.4 m2. The pressure at the open surface and at the hole are equal to the atmospheric pressure. Neglect the small velocity of the water near the open surface in the tank. (a) Find the initial speed of water coming out of the hole. (b) Find the speed of water coming out when half of water has leaked out. (c) Find the volume of eater leaked out using a time interval dt after the height remained is h. Thus find the decrease in height dh in terms of h and dt.
(d) From the result of park (c) find the time required for half of the water to leak out.


Pressure decreases as one ascends the atmosphere. If the density of air is ρ, what is the change in pressure dp over a differential height dh?


Considering the pressure p to be proportional to the density, find the pressure p at a height h if the pressure on the surface of the earth is p0.


A glass capillary sealed at the upper end is of length 0.11 m and internal diameter 2 × 10-5 m. This tube is immersed vertically into a liquid of surface tension 5.06 × 10-2 N/m. When the length x × 10-2 m of the tube is immersed in liquid then the liquid level inside and outside the capillary tube becomes the same, then the value of x is ______ m. (Assume atmospheric pressure is 1.01 × 105 `"N"/"m"^2`) 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×