हिंदी

Fill in the blank : In maximization type, all the elements in the matrix are subtracted from the _______ element in the matrix. - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Fill in the blank :

In maximization type, all the elements in the matrix are subtracted from the _______ element in the matrix.

रिक्त स्थान भरें

उत्तर

In maximization type, all the elements in the matrix are subtracted from the largest element in the matrix.

shaalaa.com
Special Cases of Assignment Problem
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 7: Assignment Problem and Sequencing - Miscellaneous Exercise 7 [पृष्ठ १२७]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Commerce) [English] 12 Standard HSC Maharashtra State Board
अध्याय 7 Assignment Problem and Sequencing
Miscellaneous Exercise 7 | Q 2.13 | पृष्ठ १२७

संबंधित प्रश्न

Four new machines M1, M2, M3 and M4 are to be installed in a machine shop. There are five vacant places A, B, C, D and E available. Because of limited space, machine M2 cannot be placed at C and M3 cannot be placed at A. The cost matrix is given below.

Machines Places
  A B C D E
M1 4 6 10 5 6
M2 7 4 5 4
M3 6 9 6 2
M4 9 3 7 2 3

Find the optimal assignment schedule


A company has a team of four salesmen and there are four districts where the company wants to start its business. After taking into account the capabilities of salesmen and the nature of districts, the company estimates that the profit per day in rupees for each salesman in each district is as below:

Salesman District
  1 2 3 4
A 16 10 12 11
B 12 13 15 15
C 15 15 11 14
D 13 14 14 15

Find the assignment of salesman to various districts which will yield maximum profit.


In the modification of a plant layout of a factory four new machines M1, M2, M3 and M4 are to be installed in a machine shop. There are five vacant places A, B, C, D and E available. Because of limited space, machine M2 cannot be placed at C and M3 cannot be placed at A. The cost of locating a machine at a place (in hundred rupees) is as follows.

Machines Location
A B C D E
M1 9 11 15 10 11
M2 12 9 10 9
M3 11 14 11 7
M4 14 8 12 7 8

Find the optimal assignment schedule.


Fill in the blank :

When the number of rows is equal to the number of columns then the problem is said to be _______ assignment problem.


Fill in the blank :

If the given matrix is not a _______ matrix, the assignment problem is called an unbalanced problem.


Fill in the blank :

A dummy row(s) or column(s) with the cost elements as _______ is added to the matrix of an unbalanced assignment problem to convert into a square matrix.


State whether the following is True or False :

The purpose of dummy row or column in an assignment problem is to obtain balance between total number of activities and total number of resources.


State whether the following is True or False

In number of lines (horizontal on vertical) > order of matrix then we get optimal solution.


Solve the following problem :

The estimated sales (tons) per month in four different cities by five different managers are given below:

Manager Cities
P Q R S
I 34 36 33 35
II 33 35 31 33
III 37 39 35 35
IV 36 36 34 34
V 35 36 35 33

Find out the assignment of managers to cities in order to maximize sales.


Choose the correct alternative:

The cost matrix of an unbalanced assignment problem is not a ______


An unbalanced assignment problems can be balanced by adding dummy rows or columns with ______ cost


A ______ assignment problem does not allow some worker(s) to be assign to some job(s)


State whether the following statement is True or False:

To convert the assignment problem into maximization problem, the smallest element in the matrix is to deducted from all other elements


For the following assignment problem minimize total man hours:

Subordinates Required hours for task
I II III IV
A 7 25 26 10
B 12 27 3 25
C 37 18 17 14
D 18 25 23 9

Subtract the `square` element of each `square` from every element of that `square`

Subordinates Required hours for task
I II III IV
A 0 18 19 3
B 9 24 0 22
C 23 4 3 0
D 9 16 14 0

Subtract the smallest element in each column from `square` of that column.

Subordinates Required hours for task
I II III IV
A `square` `square` 19 `square`
B `square` `square` 0 `square`
C `square` `square` 3 `square`
D `square` `square` 14 `square`

The lines covering all zeros is `square` to the order of matrix `square`

The assignment is made as follows:

Subordinates Required hours for task
I II III IV
A 0 14 19 3
B 9 20 0 22
C 23 0 3 0
D 9 12 14 0

Optimum solution is shown as follows:

A → `square, square` → III, C → `square, square` → IV

Minimum hours required is `square` hours


State whether the following statement is true or false:

To convert a maximization-type assignment problem into a minimization problem, the smallest element in the matrix is deducted from all elements of the matrix.


A marketing manager has list of salesmen and territories. Considering the travelling cost of the salesmen and the nature of territory, the marketing manager estimates the total of cost per month (in thousand rupees) for each salesman in each territory. Suppose these amounts are as follows:

Salesman Territories
  I II III IV V
A 11 16 18 15 15
B 7 19 11 13 17
C 9 6 14 14 7
D 13 12 17 11 13

Find the assignment of salesman to territories that will result in minimum cost.


To solve the problem of maximization objective, all the elements in the matrix are subtracted from the largest element in the matrix.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×