Advertisements
Advertisements
प्रश्न
Find:
`int (2x+3)/(x^2(x+3)) dx`
उत्तर
`I = int (2x+3)/(x^2(x+3)) dx` ...(i)
`(2x+3)/(x^2 (x+3)) = A/x + B/x^2 + C/(x+3)` ...(ii)
`(2x+3)/(x^2 (x+3)) = (A(x)(x+3)+B(x+3) + C (x^2))/(x^2 (x+3))`
2x + 3 = Ax(x + 3) + B(x + 3) + Cx2
Put x = 0
2(0) + 3 = A(0) (0 + 3) + B(0 + 3) + C(0)2
3 = 0 + 3B + 0
B = 1
Put x = −3
2(−3) + 3 = A(−3)(−3 + 3) + B(−3 + 3) + C(−3)2
−3 = 0 + 0 + 9C
`C = -1/3`
Put x = 1
2(1) + 3 = A(1) (1 + 3) + B(1 + 3) +C(1)2
5 = 4A + 4B + C
`5 = 4A + 4(1) +(-1/3)`
`4A = 5-4+ 1/3`
`4A = 1+ 1/3`
`4A = 4/3`
`A = 1/3`
value of A, B and C put in eq (ii)
`(2x+3)/(x^2(x+3)) = 1/(3x)+1/x^2- 1/(3(x+3))` ...(iii)
from eq (i) and eq (iii)
`I = int(1/(3x)+1/x^2-1/(3(x+3)))dx`
`I = 1/3 int1/xdx +int1/x^2 dx-1/3 int 1/(x+3) dx`
`I = 1/3 log x + x^-1/-1 - 1/3 log (x+3)+C`
`= 1/3 log x -1/x-1/3 log (x+3)+C`